Synaptobrevin 1 mediates vesicle priming and evoked release in a subpopulation of hippocampal neurons.
نویسندگان
چکیده
The core machinery of synaptic vesicle fusion consists of three soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, the two t-SNAREs at the plasma membrane (SNAP-25, Syntaxin 1) and the vesicle-bound v-SNARE synaptobrevin 2 (VAMP2). Formation of the trans-oriented four-α-helix bundle between these SNAREs brings vesicle and plasma membrane in close proximity and prepares the vesicle for fusion. The t-SNAREs are thought to be necessary for vesicle fusion. Whether the v-SNAREs are required for fusion is still unclear, as substantial vesicle priming and spontaneous release activity remain in mammalian mass-cultured synaptobrevin/cellubrevin-deficient neurons. Using the autaptic culture system from synaptobrevin 2 knockout neurons of mouse hippocampus, we found that the majority of cells were devoid of any evoked or spontaneous release and had no measurable readily releasable pool. A small subpopulation of neurons, however, displayed release, and their release activity correlated with the presence and amount of v-SNARE synaptobrevin 1 expressed. Comparison of synaptobrevin 1 and 2 in rescue experiments demonstrates that synaptobrevin 1 can substitute for the other v-SNARE, but with a lower efficiency in neurotransmitter release probability. Release activity in synaptobrevin 2-deficient mass-cultured neurons was massively reduced by a knockdown of synaptobrevin 1, demonstrating that synaptobrevin 1 is responsible for the remaining release activity. These data support the hypothesis that both t- and v-SNAREs are absolutely required for vesicle priming and evoked release and that differential expression of SNARE paralogs can contribute to differential synaptic coding in the brain.
منابع مشابه
Synaptobrevin 1 mediates vesicle priming and evoked release in 1 a subpopulation of hippocampal neurons
1 a subpopulation of hippocampal neurons. 2 3 Authors: 4 Johannes Zimmermann1, Thorsten Trimbuch1, Christian Rosenmund1 5 6 Affiliations: 7 1Neuroscience Research Center and NeuroCure Cluster of Excellence, Charité– 8 Universitätsmedizin Berlin, 10117 Berlin, Germany 9 10 Author contributions: J.Z., T.T., and C.R. designed research; J.Z., and T.T. per11 formed research; J.Z., and T.T. analyzed ...
متن کاملOpposing functions of two sub-domains of the SNARE-complex in neurotransmission.
The SNARE-complex consisting of synaptobrevin-2/VAMP-2, SNAP-25 and syntaxin-1 is essential for evoked neurotransmission and also involved in spontaneous release. Here, we used cultured autaptic hippocampal neurons from Snap-25 null mice rescued with mutants challenging the C-terminal, N-terminal and middle domains of the SNARE-bundle to dissect out the involvement of these domains in neurotran...
متن کاملTotal arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming.
Synaptic vesicles must be primed to fusion competence before they can fuse with the plasma membrane in response to increased intracellular Ca2+ levels. The presynaptic active zone protein Munc13-1 is essential for priming of glutamatergic synaptic vesicles in hippocampal neurons. However, a small subpopulation of synapses in any given glutamatergic nerve cell as well as all gamma-aminobutyrater...
متن کاملStructural determinants of synaptobrevin 2 function in synaptic vesicle fusion.
Deletion of synaptobrevin/vesicle-associated membrane protein, the major synaptic vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptor (R-SNARE), severely decreases but does not abolish spontaneous and evoked synaptic vesicle exocytosis. We now show that the closely related R-SNARE protein cellubrevin rescues synaptic transmission in synaptobrevin-deficient neurons but ...
متن کاملDifferential effects of SNAP-25 deletion on Ca2+ -dependent and Ca2+ -independent neurotransmission.
At the synapse, SNAP-25, along with syntaxin/HPC-1 and synaptobrevin/VAMP, forms SNARE N-ethylmaleimide-sensitive factor [soluble (NSF) attachment protein receptor] complexes that are thought to catalyze membrane fusion. Results from neuronal cultures of synaptobrevin-2 knockout (KO) mice showed that loss of synaptobrevin has a more severe effect on calcium-evoked release than on spontaneous re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 112 6 شماره
صفحات -
تاریخ انتشار 2014